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SUMMARY

) The analysis of variations in satellite orbits when they pass through

15th-order resonance (15 revolutions per day) yields values of lumped geo-

potential harmonics of order 15, and sometimes of order 30. The 15th-order

lumped harmonics obtained from 24 such analyses over a wide range of orbital

inclinations are used here to determine individual harmonic coefficients of

order 15 and degree 15, 16,...35; and the 30th-order lumped harmonics (from

eight of the analyses) are used to evaluate individual coefficients of order

30 and degree 30, 32,...40. The new values should be more accurate than any

previously obtained. The accuracy of the 15th-order coefficients of

degree 15, 16,...23 is equivalent to 1 cm in geoid height, while the 30th-

order coefficients of degree 30, 32 and 34 are determined with an accuracy

which is equivalent to better than 2 cm in geoid height. The results are

used to assess the accuracy of the Goddard Earth Model 10B.
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I INTRODUCTION

Three years ago we obtained I values of individual 15th-order coefficients in the

geopotential up to degree 35, from lumped harmonics of order 15 derived by analysis of

23 satellite orbits that passed through 15th-order resonance with the Earth's gravity

field. These orbits covered a wide range of inclinations to the equator, but there were

no accurate orbits at inclinations between 590 and 740. The recent orbit analysis 2 of

a satellite at 65.80 inclination (1971-10B) should make possible a better evaluation of

individual 15th-order coefficients.

Analysis of a satellite orbit that passes slowly through 15th-order resonance also

often yields values for lumped harmonics of 30th order, and previously there were results

from orbits at enough different inclinations to obtain a preliminary solution for

individual coefficients of 30th order. However, there were no results from orbits at

inclinations between 590 and 74° . This gap has again been filled by the results from

1971-lOB, and greatly improved solutions for individual 30th-order coefficients should

emerge.

2 BACKGROUND

The gravitational potential of the Earth is usually expressed as a double infinite

series of tesseral harmonics depending on latitude and longitude. The order m of the

harmonics expresses the variation with longitude, and a harmonic of order m has m

sinusoidal oscillations over 3600 of longitude. The degree Z of the harmonic (where

9 > m) governs variations with latitude, which are more complex 4 .

If the orbital period of a satellite is such that its successive ground tracks over

the Earth are 360°/m apart, so that the track repeats after m revolutions, the satellite

exhibits mth-order resonance and the perturbations due to harmonics of order m build up

day after day to produce quite a large change in some of the orbital elements. This

change can be analysed to determine a lumped harmonic of order m , that is a linear sum

of individual harmonics of order m and degree Lt, X 0 2, 9o + 4, ..., where £o - m

or m + I (depending on the orbital element being analysed, and whether m is odd or

even). By obtaining values of lumped harmonics for many resonant satellites at different

inclinations to the equator, it is possible to solve for the individual harmonic

coefficients.

A satellite experiencing 15th-order resonance usually has an average height near

500 km - the exact value depends on the inclination, being 470 km for an equatorial orbit

and 560 km for a polar orbit. At these heights the effects of atmospheric drag are

appreciable: so the contraction of the orbit under the influence of air drag brings it to

resonance and slowly draws it through resonance. The lower the drag, the longer the

resonance acts, and the better the orbit is for analysis.

The theory of the resonance has been given in Ref I and elsewhere, and will not be

repeated here; but the notation is outlined in section 3.

0 -- m' ~ mn ~ lllllll llllllmlllllilll II I



3 NOTATION

The longitude-dependent part of the geopotential at an exterior point (r,e,A) is
5

written in normalized form as

u Z R~i) P~ m(cos e) cos mA + sin mN N (I)

1-2 m-I

where r is the distance from the Earth's centre, 0 is co-latitude, X is longitude

(positive to the east), v is the gravitational constant for the Earth (398600 km 3/s2 )

and R is the Earth's equatorial radius (6378.1 km). The Pin(cos 8) are the associated

ragendre functions of order m and degree t , and C m and Sm are the normalized

tesseral harmonic coefficients: only those of order m - 15 and m - 30 are relevant here.

The normalizing factor N m is given by
5

N2  2(21 + I)(f - m)! (2)
Zm (t + m)!

Resonance is defined by means of the resonance angle 0 , given for 15th-order

resonance by

- w + M + 15(0 - v) (3)

where w is the argument of perigee, M the mean anomaly, 02 the right ascension of

the node and v the sidereal-angle. Exact resonance occurs when

$ - L + M + 15(fl - 360.987) deg/day (4)

is zero, and, in practice, perturbations due to resonance are usually appreciable if

< 10 deg/day.

The rate of change of inclination i caused by a relevant pair of geopotential
6

coefficients, C m and S , near a resonance may be written

di n -+

f-mf-qrco -I )~ fm exp$j (y(P- qw) , (5)
d--" si[ni a) FZmpG tpq (k cos i - m)tql 6- (ZIm - j9Zm) eI~jx -I }

where n 6 M , a is the same major axis, F mp is Allan's normalized inclination

function 6
, Gtpq is a function of eccentricity e , 6? denotes 'real part of' and

j - v'. The indices y, q, k and p in equation (5) are integers, with y taking

the values I, 2, 3,... and q the values 0, ±1, ±2, .... For 15th-order resonance, the

equations between X, m, k and p are: m - 15y; k - y - q; 2p - 2 k .

The largest terms in equation (5) are nearly always those with y - I, but the y - 2

terms are sometimes important too. With y - I and y - 2, the values of m that arise

are m u 15 and m - 30 respectively. For given m , the values of X that arise are

those for which (Z - k) is even; also, of course, 2 > m . Thus, if the minimum possible

value of I is denoted by o , where L. is either m or (m + I), the values of t

that arise are Z0, 2. + 2, Z°0 4, .... It is convenient to group these successive
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relevant coefficients in the form of a 'lumped harmonic', written as

_q~k Qq~kEq,k qk
C M , Sm M ) Q' (6)

where th Q are functions of i that can be taken constant for a particularit q,k.
satellit, Q. I when I - Z. , and the summation is for values of L from X

upwards in steps of 2.

For 15th-order resonance, the rate of change of i may be expressed in terms of
7

the lumped coefficients as

d i n 1 c o s s i n -0 1

dt sinsin a) (15 - Cos i) 15,15,7) 15 sin - S 15 cos 0

* 2 aF3 0 30 14 1C30  sin 2$ - S30  cos 2

* terms in (e) l cos 1 , (7)

where only the terms in (y,q) - (1,0) and (2,0) are given explicitly, although it is

often necessary to take account also of the (y,q) - (1,I) and (1,-I) terms (unless the

eccentricity is very small).

The rate of change of eccentricity at 15th-order resonance, produced mainly by the

terms with (y,q) - (],I) and (!,-i), may be writtenI:

de _ fl 16 -' 1,0

dt m .2V&__ 1 16,15,ss sin(O - W) + C 5 cos(0 - W)

- 1 92  - 1,2
" 13F 16,15,7  sin($ + w) + C15 cos( + W)

[(it) jq je jq j l  C cos

terms in I (~)Iq ' _q - s(k + q)e } c(y, qw] (8)L (Iqi)! J

Thus analysis of the variation in inclination usually gives values of lumped

harmonics with (q,k) - (0,1) and (0,2), while analysis of the variation in eccentricity

gives values of lumped harmonics with (q,k) - (1,0) and (-1,2).

4 PROCEDURE

The methods of analysis have been explained previously . In summary, the observa-

tional values of inclination are cleared of irrelevant perturbations and fitted using

the computer program THROE8 with an integrated form of the theoretical equation (7), with

extra terms when appropriate, to determine values of the lumped coefficients. Similarly

the observational values of eccentricity, cleared of perturbations, are fitted with an

integrated form of equation (8), with extra terms as necessary. With a few satellites it

is useful to make a simultaneous fitting of inclination and eccentricity using the SIMRES

program.
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Each fitting yields values of one or more pairs of lumped harmonics, and each

lumped harmonic specifies one linear equation between the individual harmonics of odd

degree (or those of even degree). If such equations are available from fittings of

orbits over a wide range of inclinations, the equations can be solved for individual

harmonic coefficients. In practice the effects usually decrease quite rapidly as the

degree of the harmonics increases, and the truncation of the solutions at a particular

degree is probably not a limiting factor on the accuracy, although it is a matter that

calls for careful judgement.

Previously, we used results from 23 orbit analyses to determine individual 15th-

order coefficients of degree up to 35. For 30th order 3 , we offered a tentative solution

for individual coefficients of degree 30, 32, ...40, from 7 orbit analyses. The addiLiun

of 1971-I0B now gives us 24 orbits for determining individual 15th-order coefficients

and 8 for 30th-order. Most of the existing analyses are accepted unchanged, but four

have been revised. The new and improved analyses are discussed in section 5.

5 NEW OR REVISED VALUES

5.1 1971-1OB, Cosmos 394 rocket

The main new results are for the satellite 1971-IOB at inclination 65.80, for which

52 orbits covering the time of 15th-order resonance were determined and analysed by

Walker 2. Values were obtained for six 15th-order lumped coefficients and two 30th-order

lumped coefficients, as follows:

10 C15  = - 0.7 ± 4.1 10 $1 - 2.4 ± 3.9

9 1,0 9.1,0

10 C21 = 35,1 ± 11.7 10 s15 M - 13.8 t 11.0
15 15 (9)

9 - 1 '2 195132

10 C15  = - 20.0 ± 10.7 1 M - 18.9 ± 10.3

90,2 9.0,2

I0 9 = - 54 ± 27 10 930 a 59 ± 40

The first pair of coefficients may seen to be ill-defined, but in fact the standard

deviations are small: it so happens that both coefficients are very small at this

ioclination. Apart from the first pair of coefficients, which have standard deviations

similar to those for 1970-87A, these values are much more accurate than any previously

determined for a satellite with inclination between 590 and 740, and they have a major

effect on the accuracy and reliability of the final solutions.

5.2 1970-87A, Cosmos 373

For this satellite, at inclination 62.90, there were only 24 orbits, all at dates

after resonance. Previously , we used a fitting which omitted the last of the 24 points. a
C

After further examination, we decided that the omission of the last point was not really€

justified, and we have returned to the fitting with all 24 points. Also the atmospheric

rtation rate was altered from A - 0.8 to A - 0.9 rev/day, in conformity with Ref 9. The

mw values for the lumped coefficients are:



90,I 90,I
10 1 - - 5.4 ± 3.6 10 S15 - - 31.4 ± 2.8 (0)

The previous values were -5.3 and -32.8 respectively, with slightly lower standard devi-

ations through the omission of the last point. In the solutions it was found necessary

to increase the standard deviation of the S coefficient by a factor of 4.

5.3 1977-12B, Tansei 3 rocket

This satellite, at inclination 65.50, was of rather high drag and cannot be expected

to give accurate values. Our previous results, based on analysis of US Navy orbits, were

not very good and were included only because of the dearth of data from inclinations near
0 10

650. Subsequently Moore has determined orbits from Hewitt camera, kinetheodolite,

visual and radar observations, and has re-analysed the change in inclination to obtain

9-0,1 9 0,1

10 9 0 13.4 ± 6.2 10 9i5 - 0.7 t 13.3 . (I1)

We have used these instead of the previous values: however, as before 1
, it was necessary

to double the standard deviation of the C coefficient.

5.4 1971-54A, SESP-l

The satellite 1971-54A, at inclination 90.20, suffered significant perturbations due

to 15th-order resonance for more than 5 years, and analysis of 269 orbits, between

November 1972 and January 1978, yielded excellent values7 of lumped harmonics of order 15

and 30.

In this analysis, however, the perturbations due to earth tides were ignored, and

Dr Philip Moore of the University of Aston has pointed out that the inclination could be

significantly affected by such perturbations, because they are also near-resonant. The

earth-tide perturbation, calculated using the equations and models adopted by Moore and

Holland11 , is shown in Fig 1. The variation may be approximated as a linear increase,

with maximum error 0.00050, which is less than the errors in the observational values of

inclination. This linear increase is at a rate of (5.6 t 1.1) x 10-6 deg/day, where an

error of 20% has been assigned to cover the neglect of ocean tides and uncertainty in

the Love number.

The previous analysis of 1971-54A was made using the THROE computer program and

assuming that the variation in inclination, after removal of known perturbations, was due

only to resonance. To discover whether the earth-tide perturbation was significant, the

analysis was repeated with a linear term included. As a result of this change, the

measure of fit e was reduced from 0.52 to 0.48, and the value determined for the linear

term gave a rate of change of inclination of (4.5 ± 0.5) x 10-6 deg/day, which agrees

with the pre-calculated value, (5.6 t 1.1) x 10-6 deg/day. The new fitting is, therefore,

to be preferred.

The values for the lumped harmonics which emerge from the new fitting are as

follows:
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9-0,1 90,1 I
10 C15 = - 16.05 t 0.21 10 S5 = - 6.90 t 0.21

9_0,2 90,2 -~. (12)

10 C30  = - 9.81 t 0.58 10 S30  = 9.00 ± 0.75

0,1
Although C15  is little changed from its previous value (-16.40 ± 0.24), the is a

considerable change in S15  (previously -5.37 ± 0.15). The new values of C30 and
30 2differ from the previous values (-8.2 and 11.1) by about 1.3 times the sum of the
30

standard deviations.

5.5 1966-63A, OVI-8

The previous results for this satellite, at inclination 144.20, have now been
12superseded by an improved analysis , in which 32 orbits were determined from observations

and the effects of solar radiation pressure were taken into account. The new values,

9_0,I 9.0,1

10 CI5  " 36900 t 9700 10 SI15 , 12200 ± 4700 , (13)

have much lower standard deviations than the previous values, and also fit the solutions

much better.

6 THE 15TH-ORDER EQUATIONS

6.1 Odd degree

Each of the 24 satellites gives values for lumped harmonics of odd degree, so that

in the notation of equation (6) we have 24 equations of the form

= 0 , 1 - 0 , 1 -1 + ,
C 15 15,15 + Q7 C17,15  Q19 19,15 + (14)

_0,1 _0,1
with similar equations for the S coefficients. The values of C15 and SI5 for the

24 satellites are listed in Table I, with the values of a, e, i and F15,15,7 " The

values of the Q coefficients up to degree 41, calculated with the RAE computer program

PROF, appear in Table 2 (on page 22).

Following the method that proved successful before , we also add constraint equations

of the form

CX15 , 0 ± 10/Z , (15)

with similar equations for S , for Z - 15, 17, 19, ... up to the highest I evaluated.
5These equations express the expectation that the order of magnitude of the individual

coefficients of degree Z is 10-5/Z2, for 15 < I < 40 , as is confirmed in a general

way by the Goddard Earth Model IOC (Ref 13).

Thus in solving for N odd-degree harmonics, we have 24 + N equations for C ,

and another 24 + N equations for S

46.2 Even degree

Lumped harmonics of even degree are obtained from 17 of the 24 satellites, so that

va have 17 equations of the form
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1,0 , + _, ( )
C15o 1 1  10- 1 ozC15 Q 16,15 + Q C 18 ,15 Q 20 20,15 " (16)

and another 17 of the form

C 1,2 - -1,2E + Q-1,2E- (75is C 16 ,15  Q18 C18 ,15  20 20,15

Thus there are 34 equations for even-degree C coefficients, and another 34 for the

S coefficients. With the constraint equations (15), we have (34 + N) equations when-1,0 1,0
solving for N even-de ree harmonics. The 17 pairs of values of C15 , and 9150

and2 -1,2 55
and the 17 pairs of 15 and 315 , are given in Table 3, with the corresponding
F factors. The Q coefficients up to degree 42 are given in Tables 4 and 5 (pages 23

and 24).

7 SOLUTIONS FOR INDIVIDUAL HARMONIC COEFFICIENTS OF 15TH ORDER

7.1 Method

The method of solution is described in Ref 1. Basically it is a least-squares

solution with the option of relaxing the standard deviations of ill-fitting points when

necessary, to keep the weighted residuals below a chosen level, usually about 1.4.

7.2 Odd-degree harmonics (. - 15,17,19...)

When the 24 equations (14) and N constraint equations (15) were solved for

3 coefficients, with 7 < N < II , the measure of fit e took the following values:

N 7 8 9 10

C equations 3.53 1.92 0.99 0.97 0.85

S equations 1.20 1.14 1.12 0.84 0.83
2

As usual, E i3 the sum of squares of weighted residuals divided by the number of

degrees of freedom, and the weighted residual is the residual for each lumped coefficient

divided by the standard deviation for that coefficient as given in Table I.

At least 10 harmonics - up to Z - 33 - are needed because the Q values are large

for the low-inclination °-ellites, as Table 2 shows. Increasing N from 10 to II

reduces e by 12% for the C equations, though only marginally for the S equations.

Increases of N beyond II reduce E by only 1% or less. So the 1l-harmonic solution

has been chosen as the most satisfactory.

The values of the odd-degree C and S coefficients given by the If-harmonic

solution are listed in Table 6. The standard deviations are on average 11% lower than in

our previous solution . This is a substantial improvement, in view of the fact that only

one new satellite was added to the existing 23, and only four of the others were revised,

mostly in a minor manner. The mean difference between the new values and the old is

1.2 x (the sum of the standard deviations), so the new solution is significantly different

from the old. For example, 10C 1 5 15 changes from -22.7 to -20.7, and 10 S from "

-7.4 to -6.5.
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Table 6

Values of odd-degree Z15 and Sz,15 given by

the l1-harmonic solution

z1 09z9 ,15  10S9g,15

15 -20.7 ± 0.5 -6.5 ± 0.4
17 7.3 ± 0.8 2.4 ± 0.7
19 -16.2 ± 0.7 -13.7 ± 0.6
21 17.9 ± 0.6 10.8 ± 0.9
23 20.6 ± 1.3 2.0 ± 1.3
25 -6.0 ± 1.8 1.1 ± 2.1
27 -4.6 ± 1.3 9.8 ± 2.4
29 -6.9 ± 1.4 -4.0 ± 1.4
31 18.4 ± 2.4 -4.9 ± 3.4
33 -1.1 ± 2.8 -12.4 ± 3.6
35 -10.5 ± 4.0 4.2 ± 4.4

The weighted residuals in the 24 satellite equations and the II constraint

equations are given in Table 7. The weighted residuals are expressed relative to the

standard deviations given in Table 1, some of which include factors of increase, as

indicated by the footnotes. These factors, either 2 or 4, were chosen to keep all the

weighted residuals for the individual satellites less than 1.4.

Table 7

Weighted residuals in the 35 equations for odd-degree harmonics,
from the ll-harmonic solution

Satellite equations Constraint equations

Satellite 0,I 0I £ - -
1t -15 1; CX,15 SZ,15

65-09A 0.08 0.31 15 0.47 0.15
69-68B 0.25 0.27 17 -0.21 -0.07
64-84A -0.19 -0.83 19 0.59 0.49
79-82A -0.01 0.34 21 -0.79 -0.48
71-30B -0.88 -0.99 23 -1.09 -0.11

74-34A 0.24 -0.15 25 0.37 -0.07
71-58B 0.85 0.86 27 0.34 -0.71
62-15A -0.80 0.30 29 0.58 0.33
65-53B -0.24 -1.15 31 -1.77 0.47
63-24B 0.96 0.27 33 0.13 1.35
70-87A -0.64 -1.34 35 1.28 -0.52
77-12B 1.18 0.05
71-106A -0.82 0.47
71-IOB 0.33 0.18
71-18B -0.90 0.61

70-IIA -0.58 0.19
71-13B 0.67 -0.53
77-95B 0.91 1.05
67-42A -0.10 -0.37
70-19A 0.02 1.22
67-73A 0.13 0.09
71-54A -0.01 -0.01
64-52B -0.19 1.17
66-63A -1.17 1.39

ti'Amu m i | ml i i ll i
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The weighted residuals for the individual harmonic coefficients, which are of

course relative to the arbitrary standard deviation, 10-5 /2, have an average value of

0.55; so the constraint seems to be at about the right level. By relaxing the constraint

to, say, 2 x 10-5 /2, a nominally more accurate solution can be obtained, but with

greater danger of oscillatory excursions in the values. The numerical values of the

15th-order harmonics of degree 15-35, as given in Table 6 (and Table 8), are plotted in

Fig 2, where the values of ±10-5 /2 are also indicated. Fig 2 seems to confirm that the

constraint is reasonable.
-1,0 _1,0

The values of F 15,15,7C15 and F 15,15,7S15 from Table I are plotted against

inclination in Fig 3, and the variation given by the 11-harmonic solution is shown by

the unbroken lines. The fitting of the points seems to be excellent - it is faithful

and has no unlikely-looking oscillations.

7.3 Even-degree harmonics (. - 16,18,20,...)

When the 34 equations of the form (16) or (17) and the N constraint equations

were solved for N coefficients, for 6 < N 4 10, the measure of fit c took the

following values:

N 6 7 8 9 10

C equations 1.67 1.09 1.09 1.04 0.99

S equations 2.03 1.04 0.93 0.92 0.90

Increasing N from 9 to 10 significantly reduces E for both C and S equations,

but there was no appreciable improvement in going beyond N - 10. So the 10-harmonic

solution was chosen, because

(a) it is probably the best, on the basis of c , and

(b) it fits in with the ll-harmonic solution for coefficients of odd degree.

The values of Z and S coefficients given by the 10-harmonic solution are listed

in Table 8. The only change from the previous solution was the addition of 1971-IOB:

the standard deviations are on average 5% lower than in the previous solution and the

values of the coefficients are very similar.

Table 8

Values of even-degree C Z15 and S Z15

given by the 10-harmonic solution

z 109zt,15 109S,15

16 -12.1 ± 2.3 -21.7 ± 1.5
18 -42.4 ± 1.7 -22.3 t 1.1
20 -23.5 ± 2.0 -6.0 ± 1.5

22 23.9 ± 2.0 10.2 ± 1.6
24 0.4 ± 3.6 -22.1 ± 3.2
26 -14.3 ± 5.5 14.3 ± 5.3
28 -15.2 ± 6.3 -8.4 ± 6.3
30 -3.1 ± 6.7 -15.7 ± 6.2
-32 9.2 ± 5-9 I3-0 ± 5-0 d
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1he pattern ot residuals is almost the same as before, so no Table is given. The

weighted residuals for 1971-1OB, expressed relative to the standard deviations given in.I,0 _-1,2 1I,0_-,
Table 3, are -1.24 for C15  , 0.08 for C , 1.06 for S and 0.39 for 91,2

1;15 1;51
none of the weighted residuals in the 34 satellite equations exceeded 1.4, relative to

the standard deviations of Table 3.

_1T e -1,2
The values of F16,15,8 C15 and F16,15,7 15 are plotted against inclination in

Fig 4; and Fig 5 is a similar diagram for the S coefficients. The variations given by

the 10-harmonic solution are shown by the unbroken lines in Figs 4 and 5. The only

peculiarity that strikes the eye in Figs 4 and 5 is the peak in ,0 near i - 63 in15
Fig 4, which is higher than might be expected. This arises because the fittings of

equations (16) and (17) are simultaneous and the Q coefficients for C-1 ,2 at i - 5801,0 0

are similar to the Q coefficients for Z at i - 640: since the F ,2 curve is
1; 15

pulled upwards by the observational point at i - 58.20, there is a corresponding peak

in 5 near 640.

Although the 10-harmonic solution is needed to match the 1l-harmonic solution of

Table 6, it is obvious that the higher-degree coefficients in Table 8 are poorly deter-

mined. So it would be useful to have a solution with a smaller number of coefficients

and lower standard deviations. But it is found that none of the other solutions (N - 6, 7,

8 or 9) fulfils these requirements. The standard deviations are only very slightly

smaller, and it seems that the advantage of having smaller numbers of coefficients is

balanced by the errors due to neglecting the fairly large high-degree harmonics. If

a smaller number of coefficients, n , is required, the best plan seems to be to take the

first n coefficients in Table 8.

8 COMPARISON OF 15TH-ORDER COEFFICIENTS WITH THOSE OF COMPREHENSIVE GEOPOTENTIAL
MODELS

The comparisons of gravity models made by Kloko'nik and Pospisilova 14 suggest that

only the recent models are sufficiently reliable for a useful comparison with our new

values. However, several recent geopotential models, such as Rapp's 1981 model 15 and
16

the European GRIM 3 , have utilized our previous values of 15th-order harmonics, so

that comparisons are fruitless. One recent model which is believed to be independent of
13our results is the Goddard Earth Model IOB , and our values are compared with GEM lOB

up to degree 23 in Table 9.

The object of this comparison is to assess the accuracy of GEM 1OB on the assump-

tions (a) that our standard deviations are realistic and (b) that GEM 1OB is less accurate

than our values. The mean numerical difference between the 18 GEM values in Table 9 and

the corresponding values in our solutions is 3.6 x 10 9 . This crude but effective method

of comparison suggests that the accuracy of the GEM 1OB values is about 3 or 4 X 10- 9

The mean standard deviation of our values is 1.2 x 10- , sufficiently smaller to justify

the direct comparison.

For the coefficients of degree 24-35, listed in Table 10, the mean difference
-9between the 24 GEM values and the corresponding values in our solution is 8.1 x 10-

Since eight of our values have standard deviations greater than 5 x 10-9 , this comparison
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Table 9

Comparison of our values with GEM lOB
up to degree 23

1 109z1,15 109 Z,15

GEM OB Tables 6 and 8 GEM lOB Tables 6 and 8

15 -19.7 -20.7 ± 0.5 -6.4 -6.5 ± 0.4
16 -14.4 -12.1 ± 2.3 -27.8 -21.7 t 1.5
17 2.5 7.3 ± 0.8 4.8 2.4 ± 0.7
18 -48.3 -42.4 ± 1.7 -18.6 -22.3 ± 1.1
19 -20.6 -16.2 ± 0.7 -15.3 -13.7 ± 0.6
20 -23.9 -23.5 ± 2.0 4.8 -6.0 ± 1.5
21 16.2 17.9 ± 0.6 9.5 10.8 ± 0.9
22 24.1 23.9 ± 2.0 -1.3 10.2 ± 1.6
23 15.4 20.6 ± 1.3 4.1 2.0 ± 1.3

may not give a fair impression. If we exclude these eight values, the mean difference

between the 16 remaining GEM values and the corresponding values in our solution is

7.0 x 10- 9 , while the mean standard deviation of our 16 values is 3.0 x 10-9 . Any com-

parison between uncertain values is open to criticism, and all that can be said is that

the accuracy of GEM 1OB seems to deteriorate as the degree increases beyond 23 - a

conclusion which will cause no surprise. Since only two of the 24 GEM IOB coefficients

have numerical values exceeding 7 x 10-9 , the GEM 10B values may be largely indeterminate

for degree 24-35.

Table 10

Comparison of our values with GEM lOB
for degree 24-35

10 9,15 IO9st,15

GEM lOB Tables 6 and 8 GEM 10B Tables 6 and 8

24 3.1 0.4 ± 3.6 -5.1 -22.1 ± 3.2
25 -1.6 -6.0 ± 1.8 -10.2 1.1 ± 2.1
26 4.6 -14.3 ± 5.5 1.2 14.3 ± 5.3
27 0.6 -4.6 ± 1.3 -1.1 9.8 ± 2.4
28 -6.8 -15.2 ± 6.3 -1.9 -8.4 ± 6.3

29 -7.0 -6.9 ± 1.4 -6.1 -4.0 ± 1.4
30 -5.7 -3.1 ± 6.7 -0.4 -15.7 ± 6.2
31 -0.3 18.4 ± 2.4 2.3 -4.9 ± 3.4
32 1.4 9.2 ± 5.9 -2.5 3.0 ± 5.0
33 1.0 -1.1 ± 2.8 3.3 -12.4 ± 3.6
34 1.9 10.4 ± 5.8 0.6 5.3 ± 4.9
35 -13.7 -10.5 ± 4.0 2.7 4.2 ± 4.4

Fig 3 to 5 offer graphical comparisons of GEM IOB (broken lines) with our solutions

(full lines). Fig 3 shows good agreement. Thus the 15th-order coefficients of odd

degree in GEM JOB, taken as a whole, provide good values of lumped harmonics over the

whole range of inclination, even though the individual coefficients are ill defined for

high degree. In Figs 4 and 5 the agreement between GEM 1OB and our graphs is not quite
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so good, but the form of the curves is similar for both solutions, apart from a divergence-I 90

with S on Fig 5 at inclinations less than 480 . For the even-degree values, too,
GEM JOB therefore provides reasonably realistic values for lumped 15th-order harmonics

over quite a wide range of inclinations, whatever the deficiencies in the values of the

individual harmonics.

This direct comparison of actual values gives a more favourable impression of the

accuracy of GEM JOB than the statistical tests applied by Lambeck and Coleman
17

9 THE 30TH-ORDER EQUATIONS AND THEIR SOLUTIONS

9.1 The equations available

Of the 24 orbits analysed at 15th-order resonance, eight have given useful values

for lumped harmonics of 30th order and even degree (seven previously used, plus 1971-1OB),

while only one has provided values for lumped harmonics of odd degree.

Therefore only the even-degree coefficients can be evaluated, and for these the

lumped harmonics are of the form

_0,2 - 0,2- 0,2-

30 " 30,30 + Q32 C32,30 + Q c34 ,30 + (18)

with the same equations for S on replacing C by S throughout. To these equations

we add constraint equations of the form

CZ,30 = 0 ± 10/2 , (19)

and similar17 for S , for 2 = 30, 32, 34, ... up to the highest 2 evaluated. Thus, in

solving for N even-degree 30th-order harmonics, we have 8 + N equations for C and

also for S .

-0,2 -0,2
The values of C30  and S30  obtained from the eight satellites are given in

Table II, together with values of F 30 ,30 ,14 ' FC and FS , which give a better idea of

the relative contributions of the 30th-order terms in equation (7), where the factor

2(R/a) 15 has a numerical value of approximately 0.6. Table 12 lists the Q coefficients.

Table I]

Values of even-degree lumped harmonics (C,S)0 2  for the eight satellites

. 9z 0,2 9i 0,2 9- .0,2 9. .2
Saelt 10 C30  10 S30 1 I09F30, 0,2 1030, 0,2

Satellite (deo) 10 3 0 F 30 ,30 ,14  30,30,14C 30 3 14S30

1974-34A 50.64 597 ± 558 679 1 651 0.000952 0.57 ! 0.53 0.65 1 0.62

1963-243 58.20 46 t 106 253 ± 88 0.01176 0.54 .4 1.25 2.98 t 1.03

1971-ICB 65.83 -54 * 27 59 ± 40 0.07292 -3.94 ± 1.97 4.30 ± 2.92

1970- IIlA 74.00 19.2 t 4.9 4.1 ± 4.4 0.2579 4.95 ± 1.26 1.06 i 1.13

1971-13D 74.05 27.1 t 11.0* 6.0 ± 3.3 0.2594 7.03 * 2.85 1.56 i 0.86

1967-42A 80.17 -9.1 1 9.2* -5.0 t 11.0, 0.4340 -3.95 a 3.99 -2.17 ± 4.77

1971-54A 90.21 -9.81 t 0.58 9.00 t 0.75 0.4755 -4.66 ± 0.28 4.28 ± 0.36

1964-521 98.68 22.8 t 7.9 38.0 1 41.2t 0.2502 5.70 ± 1.98 9.51 a 10.31

standard deviation x 2

_k__&&mA~AswL~im~xA-_
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Table 12
Vales f 0,2 _0,2 _0,2

Values of Q32  ' Q34 .'.. Q4 2  for the eight satellites

Satellite Q0 2  Q0 2  Q0 ,2  Q0 ,2  Q0, 2  QO,2

3 3 36 38 40 42

1974-34A -11.9 52.9 -131.8 200.3 -171.5 34.5

1963-24B -7.61 19.01 -20.11 2.71 11.18 -2.92

1971-10B -3.971 3.166 1.636 -1.323 -1.607 -0.149

1970-1IIA -1.121 -0.806 -0.128 0.319 0.433 0.314

1971-13B -1.107 -0.807 -0.140 0.308 0.429 0.317

1967-42A 0.155 -0.161 -0.281 -0.295 -0.252 -0.184

1971-54A 0.430 0.213 0.100 0.036 -0.000 -0.020

1964-52B -1.113 -0.847 -0.281 0.127 0.313 0.333

9.2 Solutions for individual harmonic coefficients of 30th order and even degree

When the 8 + N equations were solved for N coefficients, with 2 < N < 6 , the

values of E were as follows:

N 2 3 4 5 6

C equations 1.75 1.38 0.98 0.96 0.87

S equations 1.35 0.71 0.70 0.70 0.69

The best value of N is not at all clear from these results. For the S equations

it is enough to take N - 3, giving harmonics up to X - 34, but only because the coef-

ficients for I - 36, 38 and 40 are small (all being less than half their standard
deviation, as the solutions show). A priori, however, it would be expected that six

harmonics, up to X - 40, should be evaluated, because Table 12 shows that the largest

Q coefficients for 1974-34A are Q38 and Q40 " For the C equations there is an

advantage in increasing N from 4 to 6, since c decreases by 11%. A value of N

higher than 6 cannot be accepted, because there are only seven satellites distinct in

inclination.

In these circumstances it seems appropriate to give two solutions, for N - 6 and

for a lower value. This lower value is chosen as N - 4, because th, C equations are

fitted much better at N - 4 than at N - 3. These two solutions are given in Table 13,

with the GEM 1OB values (which cease at I - 36). The standard deviations of the new

-- 6-harmonic solution are on average 29% lower than in our previous solution, so the inclu-

sion of 1971-10B has brought about a great improvement. Previously, only the values of

the L - 30 coefficients could be regarded as well defined. In the new solution the

values for Z - 30, 32 and 34 seem reliable, with good consistency between the 4-harmonic

and 6-harmonic solutions.
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Table 13

Values of C 30 and S ,0 of even degree given by our

6- and 4-harmonic solutions, and by GEM IOB

10 9z 3 0  1093 ,30

6-harmonic 4-harmonic GEM 1OB 6-harmonic 4-harmonic GEM 1OB

30 -3.4 ± 1.1 -2.6 ± 1.0 -5.2 8.3 ± 0.9 8.6 ± 0.6 11.1

32 -7.9 ± 2.4 -8.3 t 2.7 -0.6 -2.9 ± 2.2 -3.3 ± 2.1 -0.2

34 -11.8 ± 2.9 -12.8 ± 3.2 -11.9 9.0 ± 2.6 8.8 ± 2.5 1.2

36 -6.4 ± 3.9 -8.9 ± 3.2 -3.9 -0.6 ± 3.3 -1.3 ± 2.6 -0.9

38 5.0±3.9 1.5±3.2

40 4.4±3.2 1.3±2.7

Table 14 gives the weighted residuals in the 6-harmonic solution relative to the

standard deviations in Table 11, four of which are increased to ensure that the weighted

residuals do not exceed 1.4.

Table 14

Weighted residuals in the 14 equations used in evaluating
the 6-harmonic solution for 30th order and even degree

Satellite equations Constraint equations

S0,2l _O, 2 Degree -C

Satellite C30 $30 L X,30 SZ,30

1974-34A 0.05 0.02 30 0.31 -0.75

1963-24B 0.20 0.24 32 0.80 0.30

1971-IOB -0.75 0.40 34 1.35 -1.03

1970-IIIA 0.00 -0.30 36 0.84 0.08

1971-13B 0.73 0.20 38 -0.73 -0.21

1967-42A -0.61 -0.98 40 -0.71 -0.21

1971-54A -0.04 0.10

1964-52B 0.47 0.81

_0,2 _0,2
The values of F30 ,30 ,14C 30 and F30,30,14 S30 are plotted against inclination

in Fig 6 with the variations given by our 6-harmonic solution (unbroken lines) and our

4-harmonic solutica (dot-dash lines). With the S-coefficients there is nothing to choose

between the two fittings, but for the C-coefficients the 6-harmonic solution gives a

noticeably better fit and is also less extreme in its variations.

9.3 Comparison with comprehensive geopotential models

The GEM lOB values can appropriately be compared with our 4-harmonic solution, and

the agreement is surprisingly good. The mean numerical difference between the eight GEM
-9values and the corresponding values in our solution is 3.7 x 10- . Since the mean
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standard deviation of our values is 2.2 x 10- 9 , it is possible that the 30th-order

harmonics of even degree in GEM lOB may have errors as low as 3 x I0- 9 .

In Fig 6 the variations of the lumped harmonics from our solutions are compared

with the variation given by GEM lOB, shown by the broken lines. For the C-coefficients

the GEM lOB curve is of the same form as our solution, and all our eight values are

fitted to within 2.8 standard deviations. For the S-coefficients the agreement is not so

good but the values are fairly small and are again fitted to within 2.8 standard

deviations. All in all, GEM 10B emerges well from the comparisons.

15
For the 30th-order harmonics, GRIM 3 is independent of our values, and Rapp uses

only our previous (30,30) coefficient. So comparisons are legitimate, and in Table 15

.3ur 4-harmonic solution is set beside GRIM 3 and our 6-harmonic solution beside Rapp's

model.
Table 15

Values of even-degree 30th-order coefficients given by our 4-harmonic solution,

GRIM 3, our 6-harmonic solution and Rapp
15

1 0 9ECZ.30 10 9i 30

4-harm. GRIM 3 6-harm. Rapp 4-harm. GRIM 3 6-harm. Rapp

30 -2.6 -2.7 -3.4 (-3.3) 8.6 2.9 8.3 (7.5)

32 -8.3 -2.1 -7.9 -6.7 -3.3 -2.6 -2.9 0.5

34 -12.8 -24.2 -11.8 -22.9 8.8 -7.7 9.0 -0.6

36 -8.9 -11.4 -6.4 -6.0 -1.3 1.9 -0.6 4.8

38 5.0 0.5 1.5 2.5

40 4.4 1.2 1.3 -1.3

The mean difference between the eight GRIM values and ours is 5.8 x 10"9, while the mean

difference between the ten independent Rapp values and ours is 4.2 x I0- 9. Thus Rapp's

model agrees with our values almost as well as GEM 10B, while for GRIM 3 the agreement

is not so good. However, the mean difference is less, 4.3 x I0-9 , in the recent GRIM3-L]
18

model

10 DISCUSSION

10.1 The 15th-order harmonics

Our previous evaluation of 15th order harmonics I had one unsatisfactory feature:

there was only one accurate orbit analysis for inclinations between 590 and 730, and that

orbit (1970-87A) gave values only for odd-degree harmonics. Furthermore the analysis

of this satellite was of questionable reliability, because it was based on an inadequate

number of orbits (23), all at times after resonance.

This deficiency in the previous data has now been put right by the addition of

1971-IOB at inclination 65.9 ° , and the resulting coverage of the inclination range is now
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quite satisfactory (see Figs 3 to 5), although further accurate orbit analyses, particu-

larly at inclinations between 590 and 730, would improve the accuracy and reliability of

the results.

The curves of odd-degree lumped harmonics in Fig 3 differ significantly from their
_0,1

previous form at inclinations between about 600 and 700. For the C coefficients, it

appears that the previously available values near 65 and 70 inclination were in error

by somewhat more than their standard deviations, and the same applies to the S coef-

ficient obtained from 1970-87A at 62.90.

For the even-degree lumped harmonics, shown in Figs 4 and 5, the previous curves

were very poorly defined between 600 and 700 inclination, and changes were to be expected.

As it turns out, however, the new values for 1971-IOB fit the old curves quite well, and

no changes of any importance occur.

The new values of the 15th-order coefficients (Tables 6 and 8)*should be more

reliable than the previous set, because the gap previously existing has been filled by

1971-10B and because improved values of odd-degree lumped harmonics have been obtained

from other satellites, particularly 1977-12B, 1971-54A and 1966-63A. The standard devi-

ations of the new solutions are on average smaller than for the old, by 11% for the

odd-degree harmonics and by 5% for the even-degree harmonics. The average standard

deviation for the coefficients of degree 15, 16, 17, ..., 23 is 1.2 x 10-9 , equivalent

to about I cm in geoid height.

Figs 3 to 5 show that the Goddard Earth Model JOB provides quite realistic values

for the lumped harmonics over the whole range of inclinations, though it is probable that

the GEM JOB values for coefficients of degree higher than 24 are almost indeterminate.

10.2 The 30th-order harmonics

Our previous evaluation of 30th-order harmonics of even degree was a first attempt,

and the only values securely established were those of the 30th-degree coefficients.

Previously there were no results at all for inclinations between 590 and 73°. Again the

data from 1971-IOB has filled this gap, and the new solution (Table 13) establishes good

values for I - 32 and 34 as well as Z - 30. The average standard deviation for these

three pairs of coefficients is nearly 40% lower than in the previous solution, being

-9X 10- , equivalent to about 1 cm in geoid height. Also the 4-harmonic and 6-harmonic

solutions agree well, thus suggesting that the I - 36 values may be reliably determined.

The variations of the lumped harmonics given by the 4- and 6-harmonic solutions

are shown in Fig 6 with values from GEM lOB for comparison. The 6-harmonic solution is

seen to be preferable for the C-coefficients; and GEM JOB agrees surprisingly well with

our solutions.
C

IL CONCLUSIONS

A new set of values has been derived for the individual 15th-order harmonic coef-

ficients in the geopotential of degree 15, 16, 17, ..., 35. See Tables 6 and 8. These

values should be more reliable because the gap in inclination near 650 has now been

tilled by the results from 1971-10B. The new solution also has lower standard deviations,
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and for degree 15, 16, ... , 23 these correspond to an accuracy of about I cm in the

undulation in geoid height produced by 15th-order harmonics.

The analysis of 1971-IOB has also provided values of lumped 30th-order harmonics at

an inclination previously quite unrepresented. In the new solution (Table 13) three

pairs of coefficients, of degree 30, 32 and 34, are evaluated with an accuracy equivalent

to I1 cm in geoid height, and there is an improvement in accuracy of nearly 40Z.

The results have been used to test the Goddard Earth Model lOB, and the model

emerges rather well from the comparison, with an indication of errors of about 3 or

4 x 10-9 for coefficients of order 15 and degree 15-23, and also for those of order 30

and degree 30, 32, 34 and 36.
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